Q1.          Show that cov(aX,Y) = a cov(X,Y).
Ans:
E(X) is the expected value of the random variable X is the mean or average value of X.
COV(aX, Y)           = E([aX – E(aX)][Y – E(Y)])
                = E([aX – aE(X)][Y – E(Y)])
                                = E(a[X – E(X)][Y – E(Y)])
                                = aE([X – E(X)][Y – E(Y)])
                                = aCOV(X,Y)
2. State principle of least squares.
Ans:        Least squares, also called "regression analysis", is a computational procedure for fitting an equation to a set of experimental data points. The criterion of the "best" fit is that the sum of the squares of the differences between the observed data points, (Xi,Yi), and the value calculated by the fitting equation, Ycalc
(Xi), i.e.: SUM [Yi - Ycalc(Xi)]2 is a minimum. The reason for using the square is to make all of the differences positive numbers.
3. Find the coefficient of linear correlation between the variables X and Y given in the table.
X    1    3    4    6    8    9    11    14
Y    1    2    4    4    5    7    8      9
Also obtain the regression equation of Y on X for the data.
Ans:
Coefficient of Linear Correlation
Step-1: Calculate the average of X and Y
Xm = 56/8 = 7
Ym = 40/5 = 8
Step-2: Calculate the standard deviation of X and Y data sets:
σx=√1/N((x1-xm)2+ …(xn-xm)2
=4.062
Similarly, σy=2.598
Step-3: Calculate the covariance between the two data sets.
σxy=1/N[(x1-xm)(y1-ym)+(x2-xm)(y2-ym)+ … +(xn-xm)(yn-ym)]
= 1/8[(1-7)(1-5) + (3-7)(2-5) + (4-7)(4-5) + (6-7)(4-5) + (8-7)(5-5) + (9-7)(7-5) + (11-7)(8-5)+(14-7)(9-5)]
= 10.5
Step-4: The correlation coefficient is defined as:
r =
= 10.5/(4.062 X 2.598) = 0.994970565 = 1 (approx).
Regression equation of y on x
Regression equation is y = a + bx
Where b=


 
a =         - b


Consider the following table:
xi             yi             xi2           xiyi
1              1              1              1
3              2              9              6
4              5              16            16
6              4              36            24
8              5              64            40
9              7              81            63
11            8              121          88
14            6              196          126
50            40            524          364
Last row is the sum of the each column.
n = 8, b = 8(364) – 56(40)/(8(524) – 56(56)) = 672/1056 = 0.636
a = 40/5 – 0.636(56/8) = 0.548
Thus, the equation is y = 0.548 + 0.636x.


No comments:

Post a Comment